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between geography and phenotype

• William McBride & Widukind Lenz 
observed association between 
thalidamide use and birth defects
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The tools of observation are 
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• Human senses 

• sight, touch, hearing, smell, taste 

• Mechanical augmentation 

• binoculars, telescopes, microscopes, 
microphones 

• Chemical and Biological augmentations 

• chemical screening, microarrays, high 
throughput sequencing technology 

• What’s next?

Bytes to KB

Megabytes to 
Terabytes



Your doctor is observing you 
like never before

>99% of Hospitals have Electronic Health Records



Every drug order is an 
experiment.
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Observation analysis in a petabyte world

• Darwin, McBride, and Lenz were working with 
kilobytes of data

• Today’s scientists are observing terabytes and 
petabytes of data

• The human mind simply cannot make sense of that 
much information

• Data mining is about making the tools of data 
analysis (“hypothesis generation”) catch up to the 
tools of observation



But, there’s a problem…



Bias confounds observations
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Drug-drug interactions (DDIs)

• DDIs can occur when a patient takes 2 or more drugs

• DDIs cause unexpected side effects

• 10-30% of adverse drug events are attributed to DDIs

• Understanding of DDIs may lead to better outcomes

• precaution in prescription

• synergistic therapies



Polypharmacy increases with age

76% of older Americans used two or more prescription drugs
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More needs to be done to understand and 
identify drug-drug interactions

• Clinical trials do not typically investigate drug-
drug interactions

• Observational studies are the only systematic 
way to detect drug-drug interactions



Large population databases 
enable DDI discovery

• Contain clinical data on millions of patients over many 
years 

• Currently being used to establish single drug adverse 
events (pharmacovigilance) 

• Eg. Spontaneous Adverse Event Reporting Systems 

• Collect adverse event reports for a patient (a snapshot 
in time) 

• Maintained by WHO > FDA > Health Canada

14
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most of these red lines are false - which are true?



Observational data are confounded

16

• Spontaneous reporting systems are observational 
data sets (unknown biases) 

• noise from concomitant drug use (co-Rx effect) 

• drugs co-prescribed with Vioxx more likely to be 
associated with heart attacks 

• noise from indications (indication-effect) 

• drugs given to diabetics more likely to be 
associated with hyperglycemia



SCRUB 
Statistical CorRection of Uncharacterized Bias

• Implicitly corrects for confounding of both observed and 
missing variables 

• Assumes some combination of the drugs and indications 
describes the patient covariates 

• Only works on very large data sets

N. Tatonetti et al., Science Translational Medicine (2012)
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Implicit correction of age differences 
in exposed vs non-exposed
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Bias, corrected. Missing data?

If there are no observations 
then no associations can be found.
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Diseases can be identified by the side 
effects they elicit

Diabetes

level of 
detection

unmeasured
severe effect

measured
minor effects

• physicians use observable side effects to form hypothesis about the 
underlying disease

• e.g. you can’t see diabetes, but you can measure blood glucose

21
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Severe ADE’s can be identified by the presence 
of more minor (and more common) side effects

Adverse 
Event

level of 
detection

unmeasured
severe effect

measured
minor effects

• First, identify the common side effects that are harbingers for the 
underlying severe AE

• Then, combine these side effects together to form an “effect profile” 
for an adverse event

22



T2DM

Increased 
Blood 

Glucose

Pain
Numbness

level of 
detection

unmeasured
severe effect

Severe ADEs can be identified by the presence 
of more minor (and more common) side effects

measured
minor effects



DDI prediction validation
Table S3 Novel drug-drug interaction predictions for diabetes related adverse events.

Rank Drug A Drug B Score

Minimum 
Randomization 
Rank

Known DDI 
exists

38 PAROXETINE HCL PRAVASTATIN SODIUM 11.351896014962
72 DIOVAN HCT HYDROCHLOROTHIAZIDE 7.1786599539 89
94 CRESTOR PREVACID 4.7923771645 148
107 DESFERAL EXJADE 3.97220625 129
159 COUMADIN VESICARE 0.8928376683 169
160 DEXAMETHASONETHALIDOMIDE 0.8928376683 168 CRITICAL
170 FOSAMAX VOLTAREN 0.5033125 1138
175 ALIMTA DEXAMETHASONE 0.2442375 197

• Focus on top hit from diabetes classifier 

• paroxetine = depression drug, pravastatin = cholesterol drug 

• Popular drugs, est. ~1,000,000 patients on this combination!



Analyzed blood glucose values for 
patients on either or both of these drugs

To the electronic health records…
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Informatics methods have 
taken us far, skeptics remain 
• Insulin Resistant Mouse Model

• 10 control mice on normal diet (Ctl Ctl)

• 10 control mice on high fat diet (HFD)

Simulating Pre-Diabetics



• 10 mice on pravastatin + HFD

• 10 mice on paroxetine + HFD

• 10 mice on combination + HFD

Informatics methods have 
taken us far, skeptics remain 
• Insulin Resistant Mouse Model

• 10 control mice on normal diet (Ctl Ctl)

• 10 control mice on high fat diet (HFD)



Summary of fasting glucose levels
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Replication is vital to science

• In biology we would never trust a result that hasn’t 
been replicated 

• Why should algorithms be any different?



AL George, J. Clin. Invest. (2013)

Drug-drug interactions and acquired 
Long QT Syndrome (LQTS)

• Long QT syndrome (LQTS): 
congenital or drug-induced 
change in electrical activity of 
the heart that can lead to 
potentially fatal arrhythmia: 
torsades de pointes (TdP) 

• 13 genes associated with 
congenital LQTS 

• Drug-induced LQTS usually 
caused by blocking the hERG 
channel (KCNH2)

From Berger et al., Science Signaling (2010)



Identify acquired LQTS drug-drug 
interactions using Latent Signal Detection

LQTS

tachycardia
AFib

bradycardia 
level of 

detection

unmeasured
severe effect

measured
minor effects

Lorberbaum, et al. Drug Safety (2016)



Latent Signal Detection of acquired LQTS

• Ceftriaxone — common in-patient cephalosporin antibiotic 

• Lansoprazole — proton-pump inhibitor used to treat GERD, one of the most 
commonly taken drugs in the world 

• In the EHR: Patients on the combination have QT intervals 11ms longer, on 
average and are 1.5X as likely to have a QT interval > 500ms

Top Prediction: 
Ceftriaxone + Lansoprazole

Lorberbaum, et al. Drug Safety (2016)  
Lorberbaum, et al. JACC (In press)
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antibiotic) and lansoprazole (proton pump 
inhibitor) 

• Neither drug alone has any evidence of QT 
prolongation/ hERG block 
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(another cephalosporin) – no evidence in FAERS of 
an interaction

• Negative control: lansoprazole + cefuroxime 
(another cephalosporin) – no evidence in FAERS of 
an interaction

Ceftriaxone Cefuroxime
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~10ms longer
on average



Nanion Patchliner

Lorberbaum, et al. JACC (In press)

Voltage protocol: step to +40mV 
followed by a return to -40mV

Automated Patch Clamp
• Collaboration with Rocky 

Kass (CUMC Pharmacology 
Dept.)

• Take HEK293 cells over-
expressing the hERG channel

• Perform a single-cell patch 
clamp experiment
• control
• ceftriaxone alone
• lansoprazole alone
• combination of ceftriaxone 

and lansoprazole



Ceftriaxone+Lansoprazole

Lorberbaum, et al. JACC (In press)



Ceftriaxone+Lansoprazole Cefuroxime+Lansoprazole

Lorberbaum, et al. JACC (In press)
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10ms longer

most common 
at CUMC



Reverse translational medicine reveals 
novel drug-drug interactions

• Drug-drug interactions can be discovered using 
observational data 

• paroxetine/pravastatin  

• ceftriaxone/lansoprazole 

• EHR data accurately predict prospective experiments
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